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Abstract

This paper describes a data fusion approach for 3D sensors exploiting assets of the signed distance function. The object-
oriented model is described as well as the algorithm design. We developed a framework respecting different modalities
for multi-sensor fusion, 3D mapping and object localization. This approach is suitable for industrial applications having
need for contact-less object localization like bin picking. In experiments we demonstrate 3D mapping as well as sensor
fusion of a structured light sensor with a Time-of-Flight (ToF) camera.

1 Introduction

Gripping and handling of objects demand precise recon-
struction of surfaces – surfaces to which robot gripper
jaws need to adapt. Reconstruction is challenging when
dealing with complex 3D shapes, especially if fine de-
tails are of interest or surfaces have specular reflection
characteristics. For the localization of such objects sen-
sors need to be selected w.r.t. the desired working range
or the physical principle. In many cases, a combination
of different sensors is beneficial. Optical sensors like 2D
laser profile sensors stand out due to high precision but
are also characterized by a small field of view and high
costs. Furthermore, 3D perception is only possible while
moving either sensor or object.
In general, the surface of a complex 3D shape is to be
reconstructed by merging measurements of sensors from
different perspective views. Depth measurements are
needed as well as the sensor’s pose. But often the ma-
nipulator can not guarantee high precision in every state
of moving as shown by Stelzer et al. [17]. Higher de-
grees of freedom and the resulting non-linear equations
cause position errors while moving at maximum speed.
Commonly, high precision is only given while moving
the sensor with low speed or in deadlock. In addition, the
acquisition of encoder and 3D data needs to be synchro-
nized.
Sensor fusion can help to reconstruct the environment.
Every sensor has benefits and handicaps dedicating them
for certain fields of application [8]. Dealing with mul-
tiple sensors raises the question: How much do I trust
a certain sensor in the current situation? The challenge
of multi-sensor data fusion and mapping lies in the vari-
ety of measurement characteristics. Differences in reso-
lution, frame rate, range, accuracy or sensor noise makes
need for specific mathematical sensor models.
A suitable application in industrial environments is bin
picking for sorting of parts with focus on high flexibility
in pick-and-place tasks: Via a sensor – mounted on the

robot itself or from an external view point, cf. Figure 1 –
data from the environment is processed by a compute unit
in order to classify objects and determine their pose. With
known size, position and orientation grasping and manip-
ulation of objects can be performed.
In this paper we present a representation for 3D multi-
sensor data fusion with focus on object localization.
Multiple measurements are fused in a generic truncated
signed distance representation, from which smooth point
clouds with minimal noise can be extracted. Object lo-
calization and classification is more robust on the basis
of the fused data set [21].
This paper is structured as follows: In section 2 the re-
lated work in contact-less object localization in indus-
trial applications is presented as well as 3D reconstruc-
tion from sensor data. Section 3 introduces the approach
in software and algorithm development for data acquisi-
tion and sensor fusion. Experiments in section 4 show the
accuracy in localization of a given scene in comparison to
a high precise 2D laser range finder, cf. Figure 2b. Also
sensor fusion with two rigid mounted sensors is shown in
experiments. With the outlined approach RGB-D cam-
eras can augment an accurate laser point cloud with color
information. Finally, a short conclusion is given.

2 Related Work

This section partitions related work in object localization,
3D reconstruction and mapping, and multi-sensor fusion.

2.1 Object Localization

Bin picking based on machine vision was developed
decades ago for pick-and-place applications and is still
an active research area. Gradually the sensors changed
with different approaches.
Horn and Ikeuchi [7] presented in 1983 one of the first bin
picking approaches: By the shape from shading approach
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(a) (b)

Figure 1: Bin picking with sensor rigid attached to robot
(a) and sensor with view on working area (b).

(a) (b)

Figure 2: Set up for contact-less localization with ToF
camera and structured light sensor (a) and for reference
measurements with a laser profile scanner (b).

torus objects were localized while the robot moved to-
wards the estimated grasping point. This approach is
based on a monocular camera.
Monocular cameras only work on separated objects with
fixed geometry. Grasping stacked objects could fail with
a collision because of uncertain object height. In 1990
Al-Hujazi and Sood [2] showed 3D range image segmen-
tation based on edge detection and region growing. The
algorithm determines the potential holdsites for gripping
the object. On occasion different type of 3D sensors like
Time-Of-Flight cameras [7] or structured light sensors
like the Microsoft Kinect [15] are used for bin picking
approaches.
Nieuwenhuisen et al. [15] demonstrated in 2013 an ap-
proach of extending the robot’s workspace for the bin
picking problem by replacing a stationary picking robot
by an autonomous anthropomorphic mobile robot. 3D
object recognition is based on graph matching of aligned
point cloud scans.

2.2 3D Reconstruction and Mapping

3D Reconstruction can be done with different ap-
proaches: Taylor [19] showed the usage of feature based
methods for the reconstruction of complex 3D shapes. In
many fields of applications, iterative schemes are com-
monly used. The Normal Distribution Transform (NDT)
[4, 11] and the Iterative Closest Points (ICP) algorithm
are de facto standard for range image registration [3, 23].
With the release of the Microsoft Kinect camera in 2010,
many researchers focused the localization and mapping
with hand-held RGB-D cameras. On of the most con-
siderable approaches with this type of sensor was pub-
lished by Izadi et al. [9] under the name KinectFusion:
Based on the signed distance function (SDF) [16] they
showed 3D reconstruction in real-time, while exploiting
massive parallelism on GPUs. Localized by ICP registra-
tion, the hand-held Kinect camera can be used to fill a de-
fined volume while minimizing the errors of the depth im-
age channel through data integration. Because of a high
frame rate, due to the GPU implementation, the search
for corresponding point pairs is done efficiently. Out of
the defined volume, high-density 3D models can be ex-
tracted and used for further processing. In the point cloud

library (PCL) an open-source implementation under the
name KinFu [1] is available.
Sturm et al. used the KinectFusion approach to recon-
struct persons in the sensors’s field of view. The Kinect
may even be used to create a 3D model of oneself. Send-
ing this model to a 3D printer, one receives a copy of the
own body [18].
Whelan et al. extended the KinectFusion approach to
work on large scale environments [22]. The close-range
reconstruction is done classically with KinectFusion. Ar-
eas that leave the predefined volume under sensor motion
are subsequently extracted and meshed.

2.3 Multi-sensor Data Fusion

Multi-sensor data fusion is essential w.r.t. localization
and identification of objects. Identification is based on
the outstanding attribute of an object or a combination of
its characteristics.
One reason for data fusion is to confirm the data of an-
other sensor. As mentioned previously, reflective surfaces
cause errors when using a laser scanner. On the other
hand an ultrasonic sensor has a low precision. The com-
bination of both is done by Fabrizi et al. [6].
Two rigid mounted monocular cameras can be used for
3D perception. With an overlapping field of view of
two calibrated cameras depth calculation is feasible as
shown by Zhang [24]. Intrinsic and extrinsic parameter
estimation of this stereo arrangement is performed by a
closed form solution. Depth estimation with stereo cam-
eras works well for textured surfaces.
In contrast, Time-of-Flight (ToF) cameras work on
structure-less surfaces, but have commonly less resolu-
tion and less working range. Additionally, a specific
error model resulting from the measurement principle
is needed to be designed, e.g., jumping edge errors or
multi-path reflection. With the fusion of a stereo cam-
era and a ToF camera drawbacks of both principles can
be compensated. Nair et al. used a local fusion, based
on stereo block matching and subsequently a variational
fusion based on total variation to increase smoothness of
data [13]. Using multiple ToF cameras increases depth
data accuracy as shown by Kim et al. [10].
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To the best of our knowledge, a sensor fusion application
for ToF and structured light has not been realized so far.

3 Approach

Algorithms section is divided in representation, the us-
able sensor models and the framework for sensor fusion.

3.1 Representation

The approach’s basis – the signed distance function – rep-
resents the distance of a given point to a surface. The
space from which a map is to be reconstructed, is divided
in voxels for a 3D representation. Let v be the center of
an arbitrary element, p the sensor’s position and m the
distance measurement determined in the direction of the
given element, the signed distance function (SDF) reads:

d(v) = m− ||p− v|| (1)

If the SDF returns negative values, corresponding ele-
ments are not visible to the sensor due to occlusion. Thus,
the values of the SDF are truncated or respectively mul-
tiplied with a weight w. The multiplication with the ex-
ponential model according to Bylow et al. [5] results in
the truncated signed distance function (TSDF) and is de-
scribed as followed.

w(d) =

⎧⎪⎨
⎪⎩

1 if d ≥ −ε

e−σ(d−ε)2 if d < −ε and d > −ρ

0 if d < −ρ

(2)

With focus on measurement noise and multiple view data
integration, the representation by the TSDF can be con-
sidered for sensors with noisy data like structured light or
ToF cameras. Further information relating to the TSDF
can be found in the publications of KinectFusion [9, 14].
Figures 3 sketches the registration and integration pro-
cess of new measurement data.

1: procedure ONSENSORDATAREVEIVE(sensor)
2: model ← RAYCAST(sensor)
3: scene ← get data from sensor
4: Ticp ← icp registration of model and scene
5: Tsensor ← TicpTsensor � update sensor pose
6: if (TsensorT

−1
last_push > thresh) then

7: Tlast_push ← Tsensor

8: PUSH(sensor)
9: end if

10: end procedure

Figure 3: Registration and integration of new measure-
ment data.

The function PUSH is responsible for the localization of
the sensor, as well for adding information to the voxel
space and is comparable to Izadi et al. [9].

3.2 Sensor model

The here presented approach is suitable for several types
of sensors. The most common sensor model for 3D de-
vices is the pin hole camera model which works for RGB-
D sensors as well as for ToF cameras.
The pinhole model is represented by a 3 × 4 projection
matrix P,

P =

⎛
⎝
fu 0 tu 0
0 fv tv 0
0 0 1 0

⎞
⎠ (3)

Pξ = (su, sv, s)
T → (u, v)

T
, (4)

with fu and fv representing scaling parameters and tu
and tv the coordinates of the principal point. The param-
eter s respects the fact that all points along a ray of sight
are projected to the same pixel coordinate (u, v)T. This
ambiguity is resolved with the measured distance.
Out of equations 3 and 4 the pixel-dependent line of sight
can be calculated by inversion. In this case it reads:

x =
1

fu
· u− tu y =

1

fv
· v − tv z = 1 (5)

Out of these definitions the assignment of an arbitrary
coordinate to the measurement matrix and vice versa is
possible. Figure 5a shows the raycasting model for pro-
jective sensors like the Asus Xtion or the ToF camera.
At this time, also a second model for 3D localization is
implemented, suitable for a 2D laser scanner moved by
a robot: The model for the 2D laser range finder is de-
scribed by the conversion between polar and Cartesian
coordinates. The line of sight in the 2D scanning plane of
a Micro Epsilon device (x′z′) is determined by

x′ = sin θ z′ = cos θ, (6)

where θ is the angle of the laser beam. The translation in
one direction of a robot along a linear movement is de-
scribed by an additional three degrees of freedom trans-
lation vector tT =

(
tx ty tz

)

x = x′ + tx y = ty z = z′ + tz (7)

The easiest way to get full 3D perception with such a 2D
laser range finder is to move the scanner in y direction.
Moving only in x or z direction does not deliver full 3D
perception while moving the sensor above the scene for
bin picking.
The back projection converts an arbitrary point p =
(x y z) in polar representation as follows, provided that
tx = tz = 0.

θ = arctan
x

z
, φ ∈ [−θ; θ] t = ty (8)

Figure 5b depicts the sensor model for the laser range
finder.
Further sensor models can be adapted and merged in the
existing sensor framework. If deduction in time is pos-
sible, the framework can also be implemented on power-
saving CPUs or even embedded platforms.
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Sensor 1 Sensor 2

Object

Figure 4: Sensor fusion with two rigid mounted sensors
focusing on object in the field of view.

(a) (b)

Figure 5: Raycasting models for different sensors with
structured light sensor (a) and 2D laser range finder (b).

The framework can easily be adapted to other applica-
tions and sensors. Models for other types of sensors can
be added. The software library is made available as open-
source at
https://github.com/stefanmay/obviously.

1: procedure FUSESENSORS
2: while (TSDSpace = empty) do

3: ONSENSORDATARECEIVE(sensor1)
4: end while

5: model ← RAYCAST(sensor2)
6: scene ← get data from sensor1
7: Ticp ← icp registration of model and scene
8: Tsensor2 ← TicpTsensor1 � update sensor pose
9: Tfusion ← Ticp

10: end procedure

Figure 6: Sensor fusion with two sensors based on the
TSDSpace.

3.3 Sensor Fusion and Calibration

As explained in the introduction multi-sensor data fusion
is challenging due to different sensor characteristics. The
TSDSpace can solve this problem because of sensor cor-
responding raycasting from the voxel space.

Multi-sensor fusion can be done with two possibilities:
Each sensor can map the environment independently, for
example mounted on two separated robots. The other
possibility can be achieved with two sensors mounted
rigid to each other. The field of view of both sensors must
have nearly the same orientation so the perception of the
environment is partially overlapping, cf. Figure 4.

To estimate the transformation Tfusion between two sen-
sors a scene providing unique features is mandatory.
Therefore every object seen in the raw data of the sen-
sors can be used.

While filling the TSDSpace with the first sensor the rigid
sensor array can be moved freely in the scene. If the TS-
DSpace is augmented with enough filled voxels, both sen-
sors should be fixed in a static position. After fixing the
sensor array the transformation between those two sen-
sors can be estimated by ICP. Figure 6 demonstrates the
sequence in sensor fusion based on the TSDSpace.

4 Experiments and Results

The here presented approach is tested on a scene contain-
ing small objects, cf. Figure 7a, which would be suitable
for a bin picking application.

4.1 System overview

The Asus Xtion Pro Live delivers point clouds with a res-
olution of 320×240 and a granularity of 1 cm. The struc-
tured light sensor has a field of view of 58◦ H, 45◦ V.
Additional to the depth sensor the Asus Xtion Pro Live
includes additionally a pre-calibrated RGB camera. Be-
cause of the structured light principle the sensor can only
deliver points with a distance higher than 0.4 m to the sen-
sor.
The second sensor in our experiments is the PMD Cam-
Board Nano with a resolution of 160 × 120 and a gran-
ularity of 1.5 cm. In contrast to the Asus Xtion, the ToF
camera can deal with objects in near field. Because of low
illumination the CamBoard Nano has a working range of
approximately 1.5 m.
Both sensor devices are mounted rigid to each other and
attached to a Kuka KR 6 R900 sixx industrial robot. Lo-
calization and mapping was done in real-time on a mod-
ern Intel Core i7 CPU. The position of the robot was
not taken into account for localization to demonstrate the
registration of depth information. Sensor data was pre-
filtered with a bilateral filter [20] as well as with a thresh-
old in magnitude. The data from the ToF camera was
also filtered for jumping edge errors to minimize errors
in localization [12].
For reference measurements the Micro Epsilon 2600-100
laser profile scanner was used. It features a field of
view of about 20◦ while the operating range is limited
to 26.5 cm. However it delivers depth information with
a resolution of 12 μm. Point clouds were generated by
moving the scanner attached on a robot over the scene
with low speed while taking scan slices in millimeter
steps, cf. Figure 7b and 7c.

4.2 Registration

The first experiment demonstrates the mapping based on
the truncated signed distance function as mentioned in
section 3. Point clouds are colored in depth for better
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(a) Scene for testing (b) Point cloud from 2D laser scanner (c) Detail with screw
driver tip

(d) Asus Xtion point cloud (e) CamBoard Nano point cloud (f) Fused point cloud

Figure 7: Set-up and results of experiments.

visualization. Figure 7 demonstrates the results of map-
ping with different sensors: Needless to say the laser gen-
erates a precise model of the scene, cf. Figure 7c where
even the tip of the screwdriver can be classified. The ben-
efit of the truncated signed distance function can be seen
in the amount of time for mapping. With the small field of
view the scanner has to be moved several times depend-
ing on distance to the objects and the region the objects
assign. So finding an object just with such a sensor is
time consuming. Also on dark and inclined surfaces the
laser scanner can not deliver all points of an object, as
seen on the points of the game pad in Figure 7b.
Because of the wider field-of-view the structured light
sensor and the ToF camera can see the whole scene in one
vision pick-up without moving. Resulting point clouds in
Figure 7d and 7e were generated by less than ten sensor
takes while slightly moving the sensor above the scene.
In contrast to the reconstruction from laser data, the game
pad can clearly be recognized in the point cloud of the
Asus Xtion. Even small details like the 2 mm height but-
tons are visible.
The ToF camera works best on rough optical surfaces.
The shiny screw-wrench can hardly can be seen in the
cloud of the ToF camera and the game pad can only be
recognized by it’s shadow. Both sensors have problems
in representing the thin shiny parts of the screw driver.

4.3 Sensor Fusion

In a second experiment, the ToF camera and the struc-
tured light sensor were mounted rigid to each other, lock-
ing at a scene with unique geometric shapes from the

sensors view. The TSDSpace is filled with sensor data
from the ToF camera with few sensor takes. After that
the transformation Tfusion is computed with the help of
the back projection. Figure 7f shows the resulting sensor
fusion. Due to the fact the ToF camera does not deliver
any color information still some of the resulting points
in the cloud are white. The augmented color from the
structured light sensor is blurred because of the trilinear
interpolation of the color.

5 Conclusion

In this paper we presented the approach of the truncated
signed distance function for localization and registration.
Furthermore we showed the fusion of different sensor
types in an experiment with a ToF camera and a struc-
tured light sensor.

The benefit of the truncated signed distance function is
shown in experiments: In comparison to the laser profile
scanner, the here introduced approach can be used for bin
picking applications with the need of a wide field of view
for object detection. The accuracy gets better through the
TSDSpace, than with raw data because of merging sensor
data from slightly different views. The already existing
RGB camera in the structured light sensor can be assis-
tant in finding objects for bin picking applications due to
their surface color.
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